Amaterasu イタチ Posted November 9, 2022 Share Posted November 9, 2022 IBM Introduces 433 Qubit "Osprey" Quantum Processing Unit Osprey's launch is a significant one for IBM: smack in the middle of IBM's roadmap, it carries the biggest boost in number of qubits within a single chip. Compared to Eagle, Osprey increases qubit counts by 3.4 times; it's an even larger increase in qubit counts than the company expects to achieve in three years' time, when it is planning to introduce the 4,158 qubit Kookaburra QPU. It's also higher than any other qubit jump since the introduction of Falcon and its 27 qubits back in 2019. Due to Osprey's positioning within IBM's roadmap — right before the company starts exploring quantum scaling by interconnecting multiple QPUs next year with Heron and its p couplings — the increase in qubit counts without a compromise in quality is exceptionally relevant. But perhaps more impressive is the fact that this jump in qubit counts was engineered at the same time that IBM laid most of the groundwork for its future modular products. The company is looking to 2023 to introduce its 133-qubit, scalable Heron QPUs, which will leverage p-couplings to interconnect several Heron chips. The idea is that it's easier to scale qubits within a given package and link separate packages than it is to create a monolithic QPU. It does bring about challenges regarding workload distribution — there are a number of ways to cut up a higher-volume quantum problem so that it fits the chip (or chips) you have available to run the quantum circuits on, and the way this is done severely impacts performance. But multi-chip scaling is a necessity, and adopting this approach meant re-engineering the entire control electronics subsystem — the bridge between classical and quantum computing. According to Dr. Oliver Dial, Chief Hardware Architect at IBM Quantum, a significant improvement came from changing the qubit control mechanism inside the company's dilution refrigerators — the hardware responsible for cooling the superconducting qubits towards near absolute zero (−273.15 °C). Before Osprey, IBM employed coaxial cables to transmit microwave control information towards the operating qubits. Now, the coaxial cables have given way to flexible ribbon cables (the same sort that's used wherever there are electronics and hinges, such as in your laptop). These ribbon cables themselves occupy much less space and offer much higher throughput than the previous solution while costing less time and resources to deploy. Dr. Oliver Dial says they allowed IBM to increase control density by 70% while reducing costs fivefold.At its Quantum Summit today, IBM announced the successful development of its 'Osprey' QPU (Quantum Processing Unit) — its 433-qubit 2022 roadmap target. The new QPU significantly increases the number of working qubits within a single QPU — the previous-gen 'Eagle' QPU only carried 127 of them. The new launch is another confident step for IBM's aggressive quantum computing roadmap, which aims to deliver QPUs with tens of thousands (perhaps even hundreds of thousands) of qubits by 2030. "The new 433 qubit 'Osprey' processor brings us a step closer to the point where quantum computers will be used to tackle previously unsolvable problems," said Dr. Darío Gil, Senior Vice President, IBM and Director of Research. LINK Link to comment Share on other sites More sharing options...
Recommended Posts