Jump to content
Facebook Twitter Youtube

[Software] A clear definition and classification taxonomy for safety-critical self-adaptive robotic systems


bkacjya
 Share

Recommended Posts

A clear definition and classification taxonomy for safety-critical self-adaptive systems

 

Robotic systems are set to be introduced in a wide range of real-world settings, ranging from roads to malls, offices, airports, and healthcare facilities. To perform consistently well in these environments, however, robots should be able to cope well with uncertainty, adapting to unexpected changes in their surrounding environment while ensuring the safety of nearby humans.

 

Robotic systems that can autonomously adapt to uncertainty in situations where humans could be endangered are referred to as "safety-critical self-adaptive" systems. While many roboticists have been trying to develop these systems and improve their performance, a clear and general theoretical framework that defines them is still lacking.

Researchers at University of Victoria in Canada have recently carried out a study aimed at clearly delineating the notion of "safety-critical self-adaptive system." Their paper, pre-published on arXiv, provides a valuable framework that could be used to classify these systems and tell them apart from other robotic solutions.

"Self-adaptive systems have been studied extensively," Simon Diemert and Jens Weber wrote in their paper. "This paper proposes a definition of a safety-critical self-adaptive system and then describes a taxonomy for classifying adaptations into different types based on their impact on the system's safety and the system's safety case."

The key objective of the work by Diemert and Weber was to formalize the idea of "safety-critical self-adaptive systems," so that it can be better understood by roboticists. To do this, the researchers first proposed some clear definitions for two terms, namely "safety-critical self-adaptive system" and "safe adaptation."

According to their definition, to be a safety-critical self-adaptive system, a robot should meet three key criteria. Firstly, it should satisfy Weyns' external principle of adaptation, which basically means that it should be able to autonomously handle changes and uncertainty in its environment, as well as the system itself and its goals.

To be safety-critical and self-adaptive, the system should also satisfy Weyns' internal principle of adaptation, which suggest that it should internally evolve and adjust its behavior according to the changes it experiences. To do this, it should be comprised of a managed system and a managing system.

In this framework, the managed system performs primary system functions, while the managing system adapts the managed system over time. Finally, the managed system should be able to effectively tackle safety-critical functions (i.e., complete actions that, if performed poorly, could lead to incidents and adverse events).

link

Link to comment
Share on other sites

Guest
This topic is now closed to further replies.
 Share

WHO WE ARE?

CsBlackDevil Community [www.csblackdevil.com], a virtual world from May 1, 2012, which continues to grow in the gaming world. CSBD has over 70k members in continuous expansion, coming from different parts of the world.

 

 

Important Links